Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Immunol ; 9(93): eade6256, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457513

RESUMO

Programmed cell death-1 (PD-1) is a potent immune checkpoint receptor on T lymphocytes. Upon engagement by its ligands, PD-L1 or PD-L2, PD-1 inhibits T cell activation and can promote immune tolerance. Antagonism of PD-1 signaling has proven effective in cancer immunotherapy, and conversely, agonists of the receptor may have a role in treating autoimmune disease. Some immune receptors function as dimers, but PD-1 has been considered monomeric. Here, we show that PD-1 and its ligands form dimers as a consequence of transmembrane domain interactions and that propensity for dimerization correlates with the ability of PD-1 to inhibit immune responses, antitumor immunity, cytotoxic T cell function, and autoimmune tissue destruction. These observations contribute to our understanding of the PD-1 axis and how it can potentially be manipulated for improved treatment of cancer and autoimmune diseases.


Assuntos
Doenças Autoimunes , Neoplasias , Humanos , Receptor de Morte Celular Programada 1 , Tolerância Imunológica , Ativação Linfocitária , Domínios Proteicos
2.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894844

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder considered a rare disease with a prevalence of 5.7 per 100,000 people. It is caused by an autosomal dominant mutation consisting of expansions of trinucleotide repeats that translate into poly-glutamine enlarged mutant huntingtin proteins (mHTT), which are particularly deleterious in brain tissues. Since there is no cure for this progressive fatal disease, searches for new therapeutic approaches are much needed. The small molecule pytren-4QMn (4QMn), a highly water-soluble mimic of the enzyme superoxide dismutase, has shown in vivo beneficial anti-inflammatory activity in mice and was able to remove mHTT deposits in a C. elegans model of HD. In this study, we assessed 4QMn therapeutic potential in zQ175 neo-deleted knock-in mice, a model of HD that closely mimics the heterozygosity, genetic injury, and progressive nature of the human disease. We provide evidence that 4QMn has good acute and chronic tolerability, and can cross the blood-brain barrier, and in male, but not female, zQ175 mice moderately ameliorate HD-altered gene expression, mHtt aggregation, and HD disease phenotype. Our data highlight the importance of considering sex-specific differences when testing new therapies using animal models and postulate 4QMn as a potential novel type of small water-soluble metal complex that could be worth further investigating for its therapeutic potential in HD, as well as in other polyglutamine diseases.


Assuntos
Doença de Huntington , Feminino , Camundongos , Humanos , Masculino , Animais , Camundongos Transgênicos , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Doença de Huntington/metabolismo , Caenorhabditis elegans , Modelos Animais de Doenças , Água , Proteína Huntingtina/genética
3.
Oncogene ; 42(21): 1741-1750, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37031342

RESUMO

KRAS, HRAS and NRAS proto-oncogenes belong to a family of 40 highly homologous genes, which in turn are a subset of a superfamily of >160 genes encoding small GTPases. RAS proteins consist of a globular G-domain (aa1-166) and a 22-23 aa unstructured hypervariable region (HVR) that mediates membrane targeting. The evolutionary origins of the RAS isoforms, their HVRs and alternative splicing of the KRAS locus has not been explored. We found that KRAS is basal to the RAS proto-oncogene family and its duplication generated HRAS in the common ancestor of vertebrates. In a second round of duplication HRAS generated NRAS and KRAS generated an additional RAS gene we have designated KRASBL, absent in mammals and birds. KRAS4A arose through a duplication and insertion of the 4th exon of NRAS into the 3rd intron of KRAS. We found evolutionary conservation of a short polybasic region (PBR1) in HRAS, NRAS and KRAS4A, a second polybasic region (PBR2) in KRAS4A, two neutralized basic residues (NB) and a serine in KRAS4B and KRASBL, and a modification of the CaaX motif in vertebrates with farnesyl rather than geranylgeranyl polyisoprene lipids, suggesting that a less hydrophobic membrane anchor is critical to RAS protein function. The persistence of four RAS isoforms through >400 million years of evolution argues strongly for differential function.


Assuntos
Proteínas Proto-Oncogênicas p21(ras) , Proteínas ras , Animais , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Isoformas de Proteínas/genética , Proteínas ras/genética , Proteínas ras/metabolismo , Genes ras , Mamíferos/genética
4.
Res Sq ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36711820

RESUMO

KRAS, HRAS and NRAS oncogenes belong to a family of 40 highly homologous genes, which in turn are a subset of a superfamily of >160 genes encoding small GTPases. RAS oncoproteins consist of a globular G-domain (aa1-166) and a 22-23aa unstructured hypervariable region (HVR) that mediates membrane targeting. The evolutionarily origins of the RAS isoforms, their HVRs and alternative splicing of the KRAS locus has not been explored. We found that KRAS is basal to the oncogene family and its duplication generated HRAS in the common ancestor of vertebrates. In a second round of duplication HRAS generated NRAS and KRAS generated an additional RAS gene we have designated KRASBL, absent in mammals and birds. KRAS4A arose through a duplication and insertion of the 4th exon of NRAS into the 3rd intron of KRAS. We found evolutionarily conservation of a short polybasic region (PBR1) in HRAS, NRAS and KRAS4A, a second polybasic region (PBR2) in KRAS4A, two neutralized basic residues (NB) and a serine in KRAS4B and KRASBL, and a modification of the CaaX motif in vertebrates with farnesyl rather than geranylgeranyl polyisoprene lipids, suggesting that a less hydrophobic membrane anchor is critical to RAS oncoprotein function. The persistence of four RAS isoforms through >400 MY of evolution argues strongly for differential function.

5.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638956

RESUMO

NANOG is a key transcription factor required for maintaining pluripotency of embryonic stem cells. Elevated NANOG expression levels have been reported in many types of human cancers, including lung, oral, prostate, stomach, breast, and brain. Several studies reported the correlation between NANOG expression and tumor metastasis, revealing itself as a powerful biomarker of poor prognosis. However, how NANOG regulates tumor progression is still not known. We previously showed in medaka fish that Nanog regulates primordial germ cell migration through Cxcr4b, a chemokine receptor known for its ability to promote migration and metastasis in human cancers. Therefore, we investigated the role of human NANOG in CXCR4-mediated cancer cell migration. Of note, we found that NANOG regulatory elements in the CXCR4 promoter are functionally conserved in medaka fish and humans, suggesting an evolutionary conserved regulatory axis. Moreover, CXCR4 expression requires NANOG in human glioblastoma cells. In addition, transwell assays demonstrated that NANOG regulates cancer cell migration through the SDF1/CXCR4 pathway. Altogether, our results uncover NANOG-CXCR4 as a novel pathway controlling cellular migration and support Nanog as a potential therapeutic target in the treatment of Nanog-dependent tumor progression.


Assuntos
Neoplasias Encefálicas/metabolismo , Movimento Celular/genética , Quimiocina CXCL12/metabolismo , Glioblastoma/metabolismo , Proteína Homeobox Nanog/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais/genética , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Glioblastoma/patologia , Células HEK293 , Humanos , Proteína Homeobox Nanog/genética , Oryzias/embriologia , Regiões Promotoras Genéticas , Transfecção
6.
Molecules ; 26(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203562

RESUMO

Nucleic acids are essential biomolecules in living systems and represent one of the main targets of chemists, biophysics, biologists, and nanotechnologists. New small molecules are continuously developed to target the duplex (ds) structure of DNA and, most recently, RNA to be used as therapeutics and/or biological tools. Stimuli-triggered systems can promote and hamper the interaction to biomolecules through external stimuli such as light and metal coordination. In this work, we report on the interaction with ds-DNA and ds-RNA of two aza-macrocycles able to coordinate Zn2+ metal ions and form binuclear complexes. The interaction of the aza-macrocycles and the Zn2+ metal complexes with duplex DNA and RNA was studied using UV thermal and fluorescence indicator displacement assays in combination with theoretical studies. Both ligands show a high affinity for ds-DNA/RNA and selectivity for ds-RNA. The ability to interact with these duplexes is blocked upon Zn2+ coordination, which was confirmed by the low variation in the melting temperature and poor displacement of the fluorescent dye from the ds-DNA/RNA. Cell viability assays show a decrease in the cytotoxicity of the metal complexes in comparison with the free ligands, which can be associated with the observed binding to the nucleic acids.


Assuntos
Complexos de Coordenação , Citotoxinas , DNA/química , RNA de Cadeia Dupla/química , Zinco , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Citotoxinas/química , Citotoxinas/farmacologia , Humanos , Ligantes , Células Vero , Zinco/química , Zinco/farmacologia
7.
BMC Genomics ; 21(1): 593, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32847497

RESUMO

BACKGROUND: Duplications of large genomic segments provide genetic diversity in genome evolution. Despite their importance, how these duplications are generated remains uncertain, particularly for distant duplicated genomic segments. RESULTS: Here we provide evidence of the participation of circular DNA intermediates in the single generation of some large human segmental duplications. A specific reversion of sequence order from A-B/C-D to B-A/D-C between duplicated segments and the presence of only microhomologies and short indels at the evolutionary breakpoints suggest a circularization of the donor ancestral locus and an accidental replicative interaction with the acceptor locus. CONCLUSIONS: This novel mechanism of random genomic mutation could explain several distant genomic duplications including some of the ones that took place during recent human evolution.


Assuntos
DNA Circular , Duplicações Segmentares Genômicas , DNA Circular/genética , Duplicação Gênica , Genoma , Genoma Humano , Humanos
8.
J Biol Chem ; 295(14): 4372-4380, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-31882544

RESUMO

Programmed cell death protein 1 (PD-1) is an inhibitory receptor on T lymphocytes that is critical for modulating adaptive immunity. As such, it has been successfully exploited for cancer immunotherapy. Programmed death ligand 1 (PD-L1) and PD-L2 are ligands for PD-1; the former is ubiquitously expressed in inflamed tissues, whereas the latter is restricted to antigen-presenting cells. PD-L2 binds to PD-1 with 3-fold stronger affinity compared with PD-L1. To date, this affinity discrepancy has been attributed to a tryptophan (W110PD-L2) that is unique to PD-L2 and has been assumed to fit snuggly into a pocket on the PD-1 surface. Contrary to this model, using surface plasmon resonance to monitor real-time binding of recombinantly-expressed and -purified proteins, we found that W110PD-L2 acts as an "elbow" that helps shorten PD-L2 engagement with PD-1 and therefore lower affinity. Furthermore, we identified a "latch" between the C and D ß-strands of the binding face as the source of the PD-L2 affinity advantage. We show that the 3-fold affinity advantage of PD-L2 is the consequence of these two opposing features, the W110PD-L2 "elbow" and a C-D region "latch." Interestingly, using phylogenetic analysis, we found that these features evolved simultaneously upon the emergence of placental mammals, suggesting that PD-L2-affinity tuning was part of the alterations to the adaptive immune system required for placental gestation.


Assuntos
Antígeno B7-H1/química , Placenta/metabolismo , Proteína 2 Ligante de Morte Celular Programada 1/química , Sequência de Aminoácidos , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Proliferação de Células , Feminino , Humanos , Ligantes , Ativação Linfocitária , Camundongos , Mutagênese Sítio-Dirigida , Filogenia , Gravidez , Proteína 2 Ligante de Morte Celular Programada 1/classificação , Proteína 2 Ligante de Morte Celular Programada 1/genética , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Ligação Proteica , Domínios Proteicos , Estrutura Terciária de Proteína , Alinhamento de Sequência , Eletricidade Estática
9.
Mol Biol Cell ; 30(24): 2969-2984, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31577526

RESUMO

The apical surface of the terminally differentiated mammalian urothelial umbrella cell is mechanically stable and highly impermeable, in part due to its coverage by urothelial plaques consisting of 2D crystals of uroplakin particles. The mechanism for regulating the uroplakin/plaque level is unclear. We found that genetic ablation of the highly tissue-specific sorting nexin Snx31, which localizes to plaques lining the multivesicular bodies (MVBs) in urothelial umbrella cells, abolishes MVBs suggesting that Snx31 plays a role in stabilizing the MVB-associated plaques by allowing them to achieve a greater curvature. Strikingly, Snx31 ablation also induces a massive accumulation of uroplakin-containing mitochondria-derived lipid droplets (LDs), which mediate uroplakin degradation via autophagy/lipophagy, leading to the loss of apical and fusiform vesicle plaques. These results suggest that MVBs play an active role in suppressing the excessive/wasteful endocytic degradation of uroplakins. Failure of this suppression mechanism triggers the formation of mitochondrial LDs so that excessive uroplakin membranes can be sequestered and degraded. Because mitochondrial LD formation, which occurs at a low level in normal urothelium, can also be induced by disturbance in uroplakin polymerization due to individual uroplakin knockout and by arsenite, a bladder carcinogen, this pathway may represent an inducible, versatile urothelial detoxification mechanism.


Assuntos
Corpos Multivesiculares/metabolismo , Nexinas de Classificação/metabolismo , Urotélio/metabolismo , Animais , Feminino , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/fisiologia , Glicoproteínas de Membrana/metabolismo , Membranas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Bexiga Urinária/metabolismo , Uroplaquinas/metabolismo , Uroplaquinas/fisiologia
10.
Mol Biol Cell ; 29(26): 3128-3143, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30303751

RESUMO

Uroplakin (UP) tetraspanins and their associated proteins are major mammalian urothelial differentiation products that form unique two-dimensional crystals of 16-nm particles ("urothelial plaques") covering the apical urothelial surface. Although uroplakins are highly expressed only in mammalian urothelium and are often referred to as being urothelium specific, they are also expressed in several mouse nonurothelial cell types in stomach, kidney, prostate, epididymis, testis/sperms, and ovary/oocytes. In oocytes, uroplakins colocalize with CD9 on cell-surface and multivesicular body-derived exosomes, and the cytoplasmic tail of UPIIIa undergoes a conserved fertilization-dependent, Fyn-mediated tyrosine phosphorylation that also occurs in Xenopus laevis eggs. Uroplakin knockout and antibody blocking reduce mouse eggs' fertilization rate in in vitro fertilization assays, and UPII/IIIa double-knockout mice have a smaller litter size. Phylogenetic analyses showed that uroplakin sequences underwent significant mammal-specific changes. These results suggest that, by mediating signal transduction and modulating membrane stability that do not require two-dimensional-crystal formation, uroplakins can perform conserved and more ancestral fertilization functions in mouse and frog eggs. Uroplakins acquired the ability to form two-dimensional-crystalline plaques during mammalian divergence, enabling them to perform additional functions, including umbrella cell enlargement and the formation of permeability and mechanical barriers, to protect/modify the apical surface of the modern-day mammalian urothelium.


Assuntos
Especiação Genética , Oócitos/metabolismo , Ovário/metabolismo , Uroplaquinas/genética , Urotélio/metabolismo , Zigoto/metabolismo , Animais , Diferenciação Celular , Feminino , Fertilização/genética , Regulação da Expressão Gênica , Tamanho da Ninhada de Vivíparos , Masculino , Camundongos , Camundongos Knockout , Oócitos/citologia , Ovário/citologia , Partenogênese/genética , Fosforilação , Filogenia , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Transdução de Sinais , Testículo/citologia , Testículo/metabolismo , Tetraspanina 29/genética , Tetraspanina 29/metabolismo , Uroplaquinas/classificação , Uroplaquinas/metabolismo , Urotélio/citologia , Xenopus laevis , Zigoto/citologia
11.
Inorg Chem ; 56(22): 13748-13758, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29087184

RESUMO

Two polytopic aza-scorpiand-like ligands, 6-[7-(diaminoethyl)-3,7-diazaheptyl]-3,6,9-triaza-1-(2,6-pyridina)cyclodecaphane (L1) and 6-[6'-[3,6,9-triaza-1-(2,6-pyridina)cyclodecaphan-6-yl]-3-azahexyl]-3,6,9-triaza-1-(2,6-pyridina)cyclodecaphane (L2), have been synthesized. The acid-base behavior and Cu2+, Zn2+, and Cu2+/Zn2+ mixed coordination have been analyzed by potentiometry, cyclic voltammetry, and UV-vis spectroscopy. The resolution of the crystal structures of [Cu2L2Cl2](ClO4)2·1.67H2O (1), [Cu2HL2Br2](ClO4)3·1.5H2O (2), and [CuZnL2Cl2](ClO4)2·1.64H2O (3) shows, in agreement with the solution data, the formation of homobinuclear Cu2+/Cu2+ and heterobinuclear Cu2+/Zn2+ complexes. The metal ions are coordinated within the two macrocyclic cavities of the ligand with the involvement of a secondary amino group of the bridge in the case of 1 and 3. Energy-dispersive X-ray spectroscopy confirms the 1:1 Cu2+/Zn2+ stoichiometry of 3. The superoxide dismutase (SOD) activities of the Cu2+/Cu2+ and Cu2+/Zn2+ complexes of L1 and L2 have been evaluated using nitro blue tetrazolium assays at pH 7.4. The IC50 and kcat values obtained for the [Cu2L1]4+ complex rank among the best values reported in the literature for Cu-SOD mimics. Interestingly, the binuclear Cu2+ complexes of L1 and L2 have low toxicity in cultures of mammalian cell lines and show significant antioxidant activity in a copper-dependent SOD (SOD1)-defective yeast model. The results are rationalized by taking into account the binding modes of the Cu2+ ions in the different complexes.


Assuntos
Materiais Biomiméticos/química , Complexos de Coordenação/química , Cobre/química , Superóxido Dismutase/química , Zinco/química , Animais , Antioxidantes/síntese química , Antioxidantes/química , Antioxidantes/farmacologia , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/farmacologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Humanos , Ligantes , Estrutura Molecular , Oxirredução , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Superóxido Dismutase/genética , Células Vero
12.
PLoS One ; 12(3): e0172887, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28257417

RESUMO

Subtype R3 phosphotyrosine phosphatase receptors (R3 RPTPs) are single-spanning membrane proteins characterized by a unique modular composition of extracellular fibronectin repeats and a single cytoplasmatic protein tyrosine phosphatase (PTP) domain. Vertebrate R3 RPTPs consist of five members: PTPRB, PTPRJ, PTPRH and PTPRO, which dephosphorylate tyrosine residues, and PTPRQ, which dephosphorylates phophoinositides. R3 RPTPs are considered novel therapeutic targets in several pathologies such as ear diseases, nephrotic syndromes and cancer. R3 RPTP vertebrate receptors, as well as their known invertebrate counterparts from animal models: PTP52F, PTP10D and PTP4e from the fruitfly Drosophila melanogaster and F44G4.8/DEP-1 from the nematode Caenorhabditis elegans, participate in the regulation of cellular activities including cell growth and differentiation. Despite sharing structural and functional properties, the evolutionary relationships between vertebrate and invertebrate R3 RPTPs are not fully understood. Here we gathered R3 RPTPs from organisms covering a broad evolutionary distance, annotated their structure and analyzed their phylogenetic relationships. We show that R3 RPTPs (i) have probably originated in the common ancestor of animals (metazoans), (ii) are variants of a single ancestral gene in protostomes (arthropods, annelids and nematodes); (iii) a likely duplication of this ancestral gene in invertebrate deuterostomes (echinodermes, hemichordates and tunicates) generated the precursors of PTPRQ and PTPRB genes, and (iv) R3 RPTP groups are monophyletic in vertebrates and have specific conserved structural characteristics. These findings could have implications for the interpretation of past studies and provide a framework for future studies and functional analysis of this important family of proteins.


Assuntos
Evolução Molecular , Filogenia , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Animais , Caenorhabditis elegans/genética , Diferenciação Celular/genética , Sequência Conservada/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Humanos , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/genética , Transdução de Sinais/genética
13.
14.
PLoS One ; 12(1): e0170196, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28099513

RESUMO

Uroplakins are a widespread group of vertebrate integral membrane proteins that belong to two different families: UPK1a and UPK1b belong to the large tetraspanin (TSPAN) gene family, and UPK3a, UPK3b, UPK3c, UPK3d, UPK2a and UPK2b form a family of their own, the UPK2/3 tetraspanin-associated family. In a previous study, we reported that uroplakins first appeared in vertebrates, and that uroplakin tetraspanins (UPK1a and UPK1b) should have originated by duplication of an ancestor tetraspanin gene. However, the evolutionary origin of the UPK2/3 family remains unclear. In this study, we provide evidence that the UPK2/3 family originated by gene duplication and domain loss from a protoPTPRQ-like basal deuterostome gene. PTPRQs are members of the subtype R3 tyrosine phosphatase receptor (R3 PTPR) family, which are characterized by having a unique modular composition of extracellular fibronectin (FN3) repeats, a transmembrane helix, and a single intra-cytoplasmic phosphotyrosine phophatase (PTP) domain. Our assumption of a deuterostome protoPTPRQ-like gene as an ancestor of the UPK2/3 family by gene duplication and loss of its PTP and fibronectin (FN3) domains, excluding the one closest to the transmembrane helix, is based on the following: (i) phylogenetic analyses, (ii) the existence of an identical intron/exon gene pattern between UPK2/3 and the corresponding genetic region in R3 PTPRs, (iii) the conservation of cysteine patterns and protein motifs between UPK2/3 and PTPRQ proteins and, (iv) the existence in tunicates, the closest organisms to vertebrates, of two sequences related to PTPRQ; one with the full subtype R3 modular characteristic and another without the PTP domain but with a short cytoplasmic tail with some sequence similarity to that of UPK3a. This finding will facilitate further studies on the structure and function of these important proteins with implications in human diseases.


Assuntos
Evolução Molecular , Duplicação Gênica/genética , Domínios Proteicos/genética , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Uroplaquina III/genética , Uroplaquina II/genética , Sequência de Aminoácidos/genética , Animais , Mineração de Dados , Bases de Dados Genéticas , Fibronectinas/genética , Humanos , Camundongos , Filogenia
15.
J Inorg Biochem ; 163: 230-239, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27133803

RESUMO

The Mn2+ coordination chemistry of double scorpiand ligands in which two polyazacyclophane macrocycles have been connected by pyridine, phenanthroline and bipyridine spacers has been studied by potentiometry, paramagnetic NMR and electrochemistry. All ligands show high stability with Mn2+ and the complexes were formed in a wide pH range. DFT calculations support the structures and coordination geometries derived from the study. A remarkable antioxidant activity was evidenced for these systems by the McCord-Fridovich assay and in Escherichiacoli sodAsodB deficient bacterial cells. The three systems were tested as anti-inflammatory drugs in human macrophages measuring the accumulation of cytokines upon lipopolysaccharide (LPS) pro-inflammatory effect. All complexes showed anti-inflammatory effect, being [Mn2L1]4+ the most efficient one.


Assuntos
Anti-Inflamatórios não Esteroides , Antioxidantes , Proteínas de Bactérias/metabolismo , Complexos de Coordenação , Escherichia coli/enzimologia , Macrófagos/metabolismo , Manganês , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Humanos , Manganês/química , Manganês/farmacologia
16.
J Intensive Care ; 4: 7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26788325

RESUMO

BACKGROUND: Community-acquired pneumonia (CAP) mortality exceeds 20 % in critical care patients despite appropriate antibiotic therapy. Regional tissue oxygen saturation index (rSO2) measured with near-infrared spectroscopy (NIRS) might facilitate early detection for patients at risk of serious complications. Our objectives were to determine the relationship between early determination of rSO2 and mortality and to compare discrimination power for mortality of rSO2 and other resuscitation variables in critically ill CAP patients. METHODS: This is a prospective observational study. Patients with CAP were enrolled within 6 h to intensive care admission. Demographics and clinical variables were recorded. rSO2 was determined using NIRS in brachioradialis muscle. All variables were determined at baseline and 24 h after admission. RESULTS: Forty patients were enrolled. Fourteen patients (35 %) had a baseline rSO2 < 60 % and 7 of them died (50 %). Only 1 of 26 (3.8 %) patients with rSO2 ≥ 60 % died (p = 0.007). The area under ROC curve (AUROC) showed consistent mortality discrimination at baseline (0.84, p = 0.03) and at 24 h (0.86, p = 0.006) for rSO2 values. Cox regression analysis showed that "low" rSO2 at ICU admission (hazard ratio (HR) = 8.99; 95 % confidence interval (CI) 1.05-76.8; p = 0.045) and "low" rSO2 at 24 h (HR = 13.18; 95 % CI 1.52-113.6; p = 0.019) were variables independently associated with mortality. In contrast, other variables such as Acute Physiology and Chronic Health Evaluation (APACHE II) score (HR = 1.09; 95 % CI 0.99-1.19; p = 0.052) were not associated with mortality. CONCLUSIONS: Our findings suggest that forearm skeletal muscle rSO2 differs in patients with severe CAP according to outcome and might be an early prognosis tool.

17.
PLoS One ; 10(3): e0119102, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25742129

RESUMO

BACKGROUND: The clinical use of purified SOD enzymes has strong limitations due to their large molecular size, high production cost and immunogenicity. These limitations could be compensated by using instead synthetic SOD mimetic compounds of low molecular weight. BACKGROUND/METHODOLOGY: We have recently reported that two SOD mimetic compounds, the Mn(II) complexes of the polyamines Pytren2Q and Pytren4Q, displayed high antioxidant activity in bacteria and yeast. Since frequently molecules with antioxidant properties or free-radical scavengers also have anti-inflammatory properties we have assessed the anti-inflammatory potential of Pytren2Q and Pytren4Q Mn(II) complexes, in cultured macrophages and in a murine model of inflammation, by measuring the degree of protection they could provide against the cellular injury produced by lipopolisacharide, a bacterial endotoxin. PRINCIPAL FINDINGS: In this report we show that the Mn(II) complex of Pytren4Q but not that of Pytren2Q effectively protected human cultured THP-1 macrophages and whole mice from the inflammatory effects produced by LPS. These results obtained with two molecules that are isomers highlight the importance of gathering experimental data from animal models of disease in assessing the potential of candidate molecules. CONCLUSION/SIGNIFICANCE: The effective anti-inflammatory activity of the Mn(II) complex of Pytren4Q in addition to its low toxicity, water solubility and ease of production would suggest it is worth taking into consideration for future pharmacological studies.


Assuntos
Anti-Inflamatórios/farmacologia , Manganês/metabolismo , Mimetismo Molecular , Superóxido Dismutase/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Células Vero
18.
J Inorg Biochem ; 143: 1-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25434626

RESUMO

Manganese complexes of polyamines consisting of an aza-pyridinophane macrocyclic core functionalised with side chains containing quinoline or pyridine units have been characterised by a variety of solution techniques and single crystal x-ray diffraction. Some of these compounds have proved to display interesting antioxidant capabilities in vitro and in vivo in prokaryotic (bacteria) and eukaryotic (yeast and fish embryo) organisms. In particular, the Mn complex of the ligand containing a 4-quinoline group in its side arm which, as it happens in the MnSOD enzymes, has a water molecule coordinated to the metal ion that shows the lowest toxicity and highest functional efficiency both in vitro and in vivo.


Assuntos
Antioxidantes , Manganês/química , Modelos Químicos , Quinolinas , Superóxido Dismutase/química , Animais , Antioxidantes/síntese química , Antioxidantes/química , Domínio Catalítico , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Proteínas de Peixes/química , Ligantes , Oryzias , Quinolinas/síntese química , Quinolinas/química , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química
19.
BMC Evol Biol ; 14: 13, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24450554

RESUMO

BACKGROUND: The recent availability of sequenced genomes from a broad array of chordates (cephalochordates, urochordates and vertebrates) has allowed us to systematically analyze the evolution of uroplakins: tetraspanins (UPK1a and UPK1b families) and their respective partner proteins (UPK2 and UPK3 families). RESULTS: We report here: (1) the origin of uroplakins in the common ancestor of vertebrates, (2) the appearance of several residues that have statistically significantly positive dN/dS ratios in the duplicated paralogs of uroplakin genes, and (3) the existence of strong coevolutionary relationships between UPK1a/1b tetraspanins and their respective UPK2/UPK3-related partner proteins. Moreover, we report the existence of three new UPK2/3 family members we named UPK2b, 3c and 3d, which will help clarify the evolutionary relationships between fish, amphibian and mammalian uroplakins that may perform divergent functions specific to these different and physiologically distinct groups of vertebrates. CONCLUSIONS: Since our analyses cover species of all major chordate groups this work provides an extremely clear overall picture of how the uroplakin families and their partner proteins have evolved in parallel. We also highlight several novel features of uroplakin evolution including the appearance of UPK2b and 3d in fish and UPK3c in the common ancestor of reptiles and mammals. Additional studies of these novel uroplakins should lead to new insights into uroplakin structure and function.


Assuntos
Evolução Molecular , Tetraspaninas/genética , Uroplaquinas/genética , Vertebrados/genética , Sequência de Aminoácidos , Animais , Família Multigênica , Filogenia , Alinhamento de Sequência , Tetraspaninas/química , Uroplaquinas/química , Vertebrados/classificação
20.
PLoS One ; 8(9): e74995, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086419

RESUMO

Patients suffering from Usher syndrome (USH) exhibit sensorineural hearing loss, retinitis pigmentosa (RP) and, in some cases, vestibular dysfunction. USH is the most common genetic disorder affecting hearing and vision and is included in a group of hereditary pathologies associated with defects in ciliary function known as ciliopathies. This syndrome is clinically classified into three types: USH1, USH2 and USH3. USH2 accounts for well over one-half of all Usher cases and mutations in the USH2A gene are responsible for the majority of USH2 cases, but also for atypical Usher syndrome and recessive non-syndromic RP. Because medaka fish (Oryzias latypes) is an attractive model organism for genetic-based studies in biomedical research, we investigated the expression and function of the USH2A ortholog in this teleost species. Ol-Ush2a encodes a protein of 5.445 aa codons, containing the same motif arrangement as the human USH2A. Ol-Ush2a is expressed during early stages of medaka fish development and persists into adulthood. Temporal Ol-Ush2a expression analysis using whole mount in situ hybridization (WMISH) on embryos at different embryonic stages showed restricted expression to otoliths and retina, suggesting that Ol-Ush2a might play a conserved role in the development and/or maintenance of retinal photoreceptors and cochlear hair cells. Knockdown of Ol-Ush2a in medaka fish caused embryonic developmental defects (small eyes and heads, otolith malformations and shortened bodies with curved tails) resulting in late embryo lethality. These embryonic defects, observed in our study and in other ciliary disorders, are associated with defective cell movement specifically implicated in left-right (LR) axis determination and planar cell polarity (PCP).


Assuntos
Proteínas da Matriz Extracelular/genética , Oryzias/genética , Sequência de Aminoácidos , Animais , DNA Complementar/genética , Orelha Interna/metabolismo , Orelha Interna/ultraestrutura , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Evolução Molecular , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Hibridização In Situ , Dados de Sequência Molecular , Morfolinos/farmacologia , Oryzias/embriologia , Fenótipo , Retina/efeitos dos fármacos , Retina/embriologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...